VAN-DER-POLE |
A modified Van der Pol equation with a time variable and some discrete jumps between different modes. A Van der Pole equation is a fundamental, 2-dimensional example in nonlinear oscillation theory.
Flow: ((s=1 -> (x1'=-x2/\x2'=x1-2*(1-x12)*x2/\x3'=1))/\(s=2 -> (x1'=-x2/\x2'=x1-2*(1-x12)*x2/\x3'=1)))
Jump: (s=1/\x1>=-2/\x1<0/\x2>=0.01/\x2<=0.02) -> (s'=2/\x1'=x1/\x2'>=-0.01/\x2'<=-0.01/\x3'=x3)
Init: (s=1/\x1>=0.6/\x1<=0.9/\x2>=0.6/\x2<=0.9/\x3=0)
Unsafe: (s=1/\x1>1/\x1<=2/\x2>=0.01/\x2<=2/\x3>=0/\x3<=6])\/(s=2 /\x1>=-2/\x1<-1.5/\x2>=-2/\x2<-1.5025/\x3>=0/\x3<0.375)
The state space: (1,[-2,2]×[0.01,2]×[0,6]) U(2, [-2,2]×[-2,-0.01]×[0,6])
VAN-DER-POLE |